Abstract No. Mans139

In Situ XAS Investigation of Vanadium Pentoxide Aerogel Cathodes

A.N. Mansour, P.H. Smith, W.M. Baker (Naval Surface Warfare Center), M. Balasubramanian and J. McBreen (BNL)

Beamline(s) X11A

Introduction: Nanophase vanadium pentoxide (V_2O_5) aerogel material synthesized using sol-gel techniques is being considered a potential alternative to the cobalt and nickel oxide systems as cathode materials for lithium (Li) batteries. The electrochemical performance of V_2O_5 , however, depends on its structure (i.e., crystalline vs. amorphous), morphology (i.e., particle size and surface area), and water content.

Methods and Materials: In Situ XAS combined with electrochemical charge and discharge methods was used to examine the evolution of the oxidation state and local structure of vanadium as a function of state of charge and cycling in a nonaqueous cell.

Results: We show that the oxidation state of V in V_2O_5 aerogel cathode heat treated in a vacuum oven at $220^{\circ}C$ for 20.5 hours is similar to that of V in a commercially obtained sample of orthorhombic V_2O_5 . We also show that Li insertion during the first cycle of discharge leads to the reduction of V(V) to V(IV) and V(IV) to V(III) in a manner consistent with the stoichiometry of the sample, i.e., $Li_xV_2O_5$, (Figure 1). In addition, Li extraction during charge leads to oxidation of V(III) to V(IV) and then V(IV) to V(V). The oxidation state of V in fully charged cathodes is close to +5 and remains relatively unchanged with cycling (up to at least the 16^{th} cycle). However, the average oxidation state of V in discharged V_2O_5 cathodes increases with cycling. We show that the local structure of V in the discharged state has a higher degree of symmetry than that of V in the fully charged state (Figure 2). Furthermore, a significant change in the structure of the V-V correlation of discharged cathodes is observed with cycling indicating the formation of electrochemically irreversible phases.

Conclusions: We have successfully illustrated variations in the oxidation state and local structure of V in V_2O_5 aerogel cathode as a function of states charge and discharge as well as cycling in a nonaqueous cell.

Acknowledgments: We gratefully acknowledge financial support by ONR, the Carderock Division of the Naval Surface Warfare Center's In-house Laboratory Independent Research Program administrated under ONR's Program Element 0601152N, and the US DOE (MB and JM).

Figure 1. In situ V K-edge XANES for a V_2O_5 aerogel cathode as a function of states of discharge (i.e., lithium content or x in $Li_xV_2O_5$).

Figure 2. Fourier transform of K^3 -weighted V K-edge EXAFS spectra for a V_2O_5 aerogel cathode as a function of states of discharge (i.e., lithium content).